
Solutions for Homework Set 3

1. Kittel Problem 4.4

Solution

The force constant between the p and p + s planes of atoms is given by

Cp = A

(
sin(pk0a)

pa

)
,

and so we generalise the dispersion equation in Kittel Equation (4.16a) viz.

ω2 =
2
M

∑
p>0

Cp (1− cos(pka)) , (1)

to give

ω2 =
2
M

∑
p>0

A

(
sin(pk0a)

pa

)
(1− cos(pka)) . (2)

The derviative is given by differentiating through the sum

dω2

dk
=

2A

M

∑
p>0

[sin(pak) sin(pak0)] . (3)

When k = k0 then the sum becomes

dω2

dk
=

2A

M

∑
p>0

sin(kpa)2, (4)

which for ka 6= mπ diverges. For ka = mπ, the sin terms vanish and the sum gives exactly zero.

2. Kittel Problem 4.5

Solution

This problem is calculated largely analogously to the two atom lattice example in Kittel, Chapter 4. The
equations of motion are given by

M
d2us

dt2
= 10C(vs − us)− C(us − vs−1),

= C(10vs + vs−1 − 11us); (5)

M
d2vs

dt2
= 10C(us − vs)− C(vs − us+1),

= C(10us + us+1 − 11vs). (6)
(7)

We look for plane wave solutions

us = u0e
−i(ωt−sKa),

vs = v0e
−i(ωt−sKa). (8)

The equations of motion (5) and (6) become,

−Mω2u = C
(
10v0 + v0e

−iKa − 11u0

)
(9)

−Mω2v = C
(
10u0 + u0e

iKa − 11v0

)
. (10)



We can rewrite this as a matrix equation,
( −Mω2 + 11C −10C − Ce−iKa

−10C − CeiKa −Mω2 + 11C

)
=

(
0
0

)
(11)

This is a simple eigenvalue equation which we solve in the usual way. That is, we first require that the determinant
vanish which will give us the dispersion equation. This gives us

M2ω4 − 22Mω2C + 20C2(1− cosKa) = 0. (12)

The dispersion equation is then given by

ω2 =
11C

M
±
√

101C2 + 20C2 cosKa

M
. (13)

The eigenvectors can be extracted in the usual manner, though this is rather tedious to do and for our purposes
not needed. However, we can see by inspection that the two modes given by the ± above correspond to the
acoustic and optical modes respectively. This can be seen by plotting the dispersion equation below.

At K = 0, the cutoff frequencies are ω = 0, and ω =
√

22C/M for the acoustic and optical modes respectively.

At K = π/a the modes reduce to ω =
√

20C/M , and ω =
√

2C/m.

The dispersion equation is shown below in Figure 1, which illustrate the acoustic and optical branches.

Figure 1: Dispersion equation for Problem 4.5

3. Kittel Problem 4.6

(a) This is a problem in electrostatics, but is good to get an idea of lattice vibrations in a rather crude way.
We imagine at each lattice point there is an ion and there is a cloud of negative charge surrounding each
ion. If the ion moves a distance r from the lattice point, then the force on the ion is due to the electric
charge enclosed in a sphere of radius r centred at the lattice point. Hence, if ρ is the density of electric
charge then the electric field a distance r from the lattice point is the same as that in a uniformly charged
sphere of radius R. A simple calculation using Gauss’s law gives the electric field in a uniformly charged
sphere is (in SI units):

E = − er

4πε0R3
r̂.

The force on the ion is then

F =
e2r

4πε0R3
.

This is like the force due to that on a spring, with spring constant k = e2/(rπε0R
3) with natural frequency

given by

ω =

√
e2

4πε0mR3
.



(b) For sodium the mass of a single atom is m ≈ 22.9/6.02 × 1023 ≈ 3.8 × 10−23g. The lattice radius of a
sodium atom R ≈ 3.7× 10−10 (Ashcroft and Mermin), and this gives a frequency of

ω ≈ 1.1× 1013Hz. (14)

(c) A variety of estimates can be used here, so in this context most are equally valid. An example is to take
the wavelength of the sound wave to be of the order the length of the ion. Then, K = π/R and the velocity
of sound becomes

vs =
ω

K
≈ 103m/s. (15)

4. Kittel Problem 5.1

(a) The dispersion equation from Chapter 4 of Kittel is given by

ω = ωm| sin Ka/2|, (16)

with ωm = (4C/m)1/2. The group velocity is given by
∣∣∣∣
dω

dK

∣∣∣∣ =
ωm a cos(Ka/2)

2
, (17)

and so the density of states D(ω) is given by

D(ω) =
L

2π

1
|dω/dK| ,

=
2L

ωm π a

1√
1− ω2/ω2

m

,

=
N

π

1√
ω2

m − ω2
. (18)

(b) The dispersion equation
ω = ω0 −AK2,

implies that for all K, we have ω ≤ ω0 and hence there are no states for ω > ω0. Therefore, D(ω) = 0 for
ω > ω0. For ω ≤ ω0 we have grad ω = −2A(kx, ky, kz) and hence the density of states becomes

D(ω) =
V K2

2π2

1
|gradω| ,

=
V

4π2A3/2

√
ω0 − ω. (19)


