Homework 4, due February 22, 1999
Problem 1. Ashcroft-Mermin 12.2

(a) We have
e(F) = BFT .M~k
where we have taken the minimum energy to be zero and the minimum at
the origin. This does not change the results.
The area A(e, k) is the area inside the curve given by k, and k, obeying
2= (M), B2 +2 (M), kk, + (M), K24
2(M ) kok. +2 (M*l)yz kyk. + (M) _ k2

We can write this in the form
Aky — lcg)2 + 2B(k; — kg)(ky — kg) + C(ky — kg) =D

with

_ -1 _ -1 _ ~1
A_(M )zz 7B (M )Zy’C_(M )yy
and

(M), (M),

Ko = —tmshe By =~ ks
and
D= ;—; — (Mfl)zz k2 — A(K%)? — ZBkgkg — C(k2)2
The area of the ellipse is A(e, k) = ﬂD\/ﬁ
which is linear in €. Therefore we have

* _ ﬁB.A(e,k,) _ 1
m- =5 e ~ VAC—B?

Next we use
(1)), = gy (M), (M), = (M7, (M),
or
(M), = det(M)(AC — B?)
from which the formula follows.
(b) The density of states follows from
g(€) = k5 [ Bk(e — BKT .M~ - §)
This can be rotated to principal axes
9(6) = 1 [ d*qd(e — 4 q" - D)
where the matrix D is diagonal and det(D) = det(M)

We now transfer to scaled coordinates and obtain



9(6) = 75 [ ds\/Aet(D)d(e — 127 = \/det (D) i/ 2

comparing with

9(6) = () s /25

gives the required answer.

Problem 2. Ashcroft-Mermin 12.4
.;total = Z.;n = Zﬁﬁlé = ﬁilE’
n n

which gives

=T
n
From
~ pn _RTLH
we find

~ 1 _ 1 Pn R,H

and therefore
1 p RH \ _
p2+R2 H2 _RH p —_—

1 pr R\ p2 R H
pi+RIH? -RH P1 p5+R; H? —RsH P2

This leads to the equations

£ = -3 p12 + — p22
p2+R2ZH?2 p1+R1H2 p2+R2H2

R _ Ry + Ry
p2+RZH?2 — pf—}-R%HQ pg—i-RgHQ
Combine these using complex arithmetic:

p—iRH — pl—iRlH _+_ pz—iRgH
p>+R?H? — p?+R2H?> ' p3+RIH?
or
1 _ 1 + 1
p+iRH — p1+iR1H p2+iRa H
or
1 _ _pit+p2+iH(R1+Rs) (p1+p2)®+H?*(R1+R2)*?

p+iRH — (p1+iR1H)(p2+iR2H) — (p1+iR1H)(p2+iR2H)(p1+p2—iH(R1+Rz2))
From this we get

: _ (p1+iR1 H)(p2+iRoH)(p1+p2—iH(R14+R2))
p+iRH = paTet (pfj_p;);_,_Hzp(lleR;p 2

which has the correct denominator. The real part of the enumerator
(which is the enumerator of p ) is




pip2(pr + p2) — RiHRyH (p1 + p2) + H?(R1 + Ra)(p1Ra + p2R1)
which is equal to

p1p2(pr + p2) + H?(p1 RS + p2 RY)

In the same way, the imaginary part gives

—p1p2H(Ry + R2) + (p1 + p2)H(R2p1 + Rip2) + H3 Ry Ry(Ry + R»)
which is

H(R,p? + R1p3) + H*R 1 Ry(R, + R»)

and this gives the correct result for R.

(c) From the equation for the Hall coefficient we have
lim R = 282 Tf the high field Hall coefficient has n.s; = 0 this means

H—oo Ri+R,
that F}im R = oo and hence R; + R = 0, compensating bands. This
—00
gives
_ pip2(p1+p2)+H?R3(p1+p2) _ pip2+H?R:
p= (p1+p2)? = (p1tp2)

Problem 3. Ashcroft-Mermin 12.6

Take a single band and consider a state with
Y(F+ R,t = 0) = e* By(7,t = 0)
if we can show the result for this wave function, it will also hold for a linear
combination. )
BN N N L o= 2 By = 3
since derivatives are invariant and the potential is periodic. Therefore
JHE+R)t . H(7)t eB. Rt

YF+Bit) = e m (P4 Rt = 0) = et et iR By (7 ¢ = 0)

which gives o

D+ B 1) = et Tk R =i TPy 4 — ()

where we could move and break up exponents since only the one with H
depends on position, the other two are just numbers. Hence we have

Y(F + R, 1) = et SRy (7 1)

which is the required result. In this case we are able to derive the result of
the semi-classical equation of motion directly from quantum mechanics!




