Homework 5, due March 10, 1999
Problem 1. Ashcroft-Mermin 13.6

(a) Start with (12.33)
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where we supressed the bandindex and where we consider a trajectory with
k(t = 0) = k. T also changed notation for the average for typographical
reasons. Integration of (12.33) gives
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This tells us that the change in E is perpendicular to the field and hence

we can also write
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The relaxation time only depends on the energy and that is conserved,
hence we leave it outside and get
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Integration by parts gives
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For a closed orbit we have
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with corrections of order % This gives
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to order % In addition, we also have
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for the same reason and to the same order. This proves (13.85). NOTE:
symmetry actually makes the last integral equal to zero, unless spin-orbit
coupling is included.!

The derivation is the same to
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but now the time T is the time it takes to go through one Brillouin zone
on the open orbit. The distance travelled in this time T is therefore some
reciprocal lattice vector K. In this case we have

Et+T)=Fk{t)+K

and we get

this gives
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and the second term is much larger, hence
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The expression
.
is nothing but the average velocity along the orbit in K-space and therefore

< ¥(k) > is just the average velocity of motion along the orbit in real
space.



(c) We use (13.69) for the conductivity
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Because the derivative of the Fermi function is a delta function we use ony
the relaxation time at the Fermi energy, 7. Also we use (13.26) to change
the derivative in a k-derivative and get

j=gr Lk <o) B> (-4)

Now we take E - H = 0, which means that the component of < 17(]3) >
parallel to H does not contribute to the dotproduct and we get
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Therefore, for a closed orbit,
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because in the cross product we only need the perpendicular component
of the k-vector. With @ = 5 FE x H we get

J=—ef Lk (k- <E>)L(_%)

The term with <_’I_c’ > does not give a contribution, since we can do an
integration over k, first and < k > does not depend on this ( already
integrated out) and since f is periodic the integral is zero. Therefore
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Since we also have J - EII = 0 this is equal to (13.87) for the complete J.

Consider a closed electron Fermi surface. Take the origin of the Brillouin
zone at the center of this orbit. This choice is allowed. We then have
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But if the orbit is a closed electron orbit, the Fermi function is zero outside
and the surface integral vanishes. Hence
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where n, is the number of electrons inside the electron surface. Since W

is perpendicular to H , 80 is j For a hole surface we rewrite the original
formula slightly:
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Integration by parts gives
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the surface term disappears again, since for a hole Fermi surface the Fermi
function is one outside. We now have
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as required.

Now we describe a Fermi surface that is open. In this case we have
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The direction of the orbit in real space 7 is parallel to < #(k) > and hence

at high magnetic fields we have a part 7 - E just like in (12.56). Note that
the second term in (12.56) vanishes at high fields.

Now start at a point k and perform a line integral along K. as part of the
previous expression for ] Since the average velocity is the same along this
orbit we need to integrate the first velocity term along this line. Since the
integral is periodic, only terms perpendicular to K| survive (the average
of a parallel term along this line is zero). Since we also know that the
current is perpendicular to H , the current will be parallel to 7

In part (b) we showed that the average velocity at high fields is indepen-
dent of H, and hence the current is independent of H.

The conductivity formula is
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This has an explicit 7 dependence in front, and the rest only comes via
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The conductivity is defined in the limit E — 0 and hence we use
L F(k(t'r)) = £=chrM G x H

and this only depends on the combination H7. Therefore also
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and Kohler’s law follows immediately:
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Starting from
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and using the definition of the average we have
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Again using the fact that we only need the lifetime at the Fermi level we
rewrite after interchanging the integrals:
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Now replace k(t) = ¢ and k = G(—t) and use Liouville’s theorem telling
that phase space volumes are the same
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where also we used the fact that the energy is conserved in magnetic field.
In this expression we need ¢ at a later time. But from the equation of
motion we see that we traverse the orbit in opposite direction if we invert
the magnetic field. Therefore
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which has the velocities in opposite order. This then shows
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as required.



