is

Homework 3, due February 5, 1999
Problem 1. Ashcroft-Mermin 1.3

Assume a collision at 71 and the next collision at 7. The change in energy

Ae = % (171 — eEt) %Tn(’l_)’g)2

where ¥; i th velocity just after collision i. Thermal averages give us:
e(T(71)) =< ym(d1)* >

e(T(72)) =< 3m(%)* >

<7;>=0

and hence

< Ae >=< (T(R)) — e(T(7)) > +SE < 2 >

The last term is simple Joule heating. There is still an average in the first

part, since we have to find the difference in position. The first term gives a
contribution

< Ae >= 4(T,,) < (T(R) — T(%)) >
where we assume that the temperature gradients are small and can take the

derivative at the average temperature of the sample.

We have .
Py — 7 = Uit — g2t?
and hence .

o o _ _£2 2
Ty —T1 >= —5 27
This gives

<(T(7) =T (7)) >=VT- <7 — % >= VT - E£7?
and the average energy loss per colision is

Ae= (T, )VT-E£

The power loss (or power generated in heat) i

P =nh¢ = 4 (T, VT - Ener = de(T,,)VT - B2
or

P = (T,,)VT -

o sy

Problem 1. Ashcroft-Mermin 1.4

ar _

(a) From % = —%p’ + f assuming that we only have one Fourier component

we get
—iwp(t) = —Lp(t) — eE(t) — ;L p(t) x H

Writing 5(t) = (ps, Py, p-)e " and similarly E(t) = (E,, E,, E.)e™*! we
get

(L —iw)p, = —eBEy —wopy
(7 —iw)py = —eEy + weps
(% —iw)p; =0



The last equation gives p, = 0 and hence j, =0

The first two equations give

1w wc Dz E,
T—w 14 “T°\E
c  F—iw Dy Y

with the inverse equation

2 _ 1 %_iw e E,
py, ) (G-t we L—iw E,

Using E, = +iE, this gives

1 .
Dz _ 1 F—w  —Wwo 1
(py)_ B Ty ( we %—iw)(iz‘)
or

Dz eEz L T ziw)z ( — 1w F ch)

py = —eEzm(_wC F 1(% —iw)) = +ip,

which shows j, = +ij, and also

Jz:—%pw_ ne Ezm( ZwZFle)
This is equal to
2
- — 1
Jz = o Ez 1 u.u:l:zwc - nfnTEm 1-i(wFwe)T

With AE = —“C’—je(w)E and E = E, (1, +i,0)e/*>~“) we have a solution
as long as

k2 = %;e(w)

Also formula 1.32 tells us

oo 4
AB = —ie(4nj _ s f
or
2 .
re(w) = L (Toorimhanyy — %)

which gives

|€
ol o

— 1 _q{_Ar, 1 0 _q_ L w
( ) 1 + UO]_ z(w:ch)T =1 wr 90 It(wFwe) 1 1"‘(‘JJ:FWC)

This is like the formula we had before, but with a correction term ——%——
TH(wFwe)

Express the frequency in units of w¢, using x = . Then we have (with
the plus sign for the field, hence the minus sign in the equation!)

()_1__£_1z*

2 —
@® g, o tH(@-1)

2
For a typical value take wo7m = 100 and :—5’ = 10%, which yields
c



—1_ 1 z10'2
@) =1- 3 0.01i+(z—1)

with real and imaginary parts:

12
Re(z) = 1 - Lot

IS _ 1 210'°
Se(z) = 22 104+ (z—1)2

There are two regimes:
(A) |z — 1| >> -~ for which we have

WeT

For z >> 1 this gives Re(z) ~ 1 — 12;2 Se(z) ~ 12;0 with the normal

plasma oscillation at z = 108.

101

For 0 < z << 1 we have Re(z) = 10 Se(z) ~ ~— and unlike before this

now diverges to plus infinity. ‘

(B) |z — 1| << 55 for which we have

Re(z) =1 - 10"(x - 1)

Se(z) = 10

which is a standard Lorentzian form with a resonance at x=1. In this case

the electric field is in resonance with the magnetic cyclotron frequency
and strong absorption is observed.

Finally, there are always solutions for k%c? = Rew? both for w < w, and
2

w > wy. The second case is the easiest. For w > w, we havee ~ 1— % and
hence need to solve k?c¢* = w? —w? which always has a solution. These is
the case discussed in the book, the electric field is not absorbed and the
magnetic field does not influence this regime. The first case is new, and
here the effect of the magnetic ﬁele is essential. We have Re ~ 100S€ and

2
. . w w .
absorption is small. From Re ~ 72 we need to solve k2c? = wE which
again always has a solution. These are the helicon waves.

Problem 1. Ashcroft-Mermin 1.5
For z >0 we have V - E = 0 = igE, = KE, or igA = KB
Similarly for z < 0 i¢qC = —=K'D
For z > 0 we have AE = (—¢2 + K2)E = —“;—:GE = K?—¢*= —“c’—:e

Similarly for z < 0 K'* — ¢> = =%

02
Finally the continuity gives for £, A = C and for E, eB =D
The first two equation give % = % i‘q—g = —‘é—g = —e where we used the

continuity equations in the last step.



Subtracting the third and fourth equation yields K2 — K'> = “.(1 — ¢)

and using the relation between K and K’ we get K*(1 — ) = 2 (1 —¢)
This gives K2 = — (49)” dy and K = — (£)°
In order for a solution to exist we need € < —1 and hence we need to be
below the bulk plasmon frequency. This gives

_ _we [ -1 r_w [ —1
K = c e+1 and K' = c e+1

since we need K >0 and K’ >0

. 2 2 . . ., . .
Finally, ¢ = K? + “ye = “ % which is positive indeed.
2 “p
w 1--+%
If wr >> 1 we have € = 1 — =% and hence ¢®>c® = w? —=5
w wp
2-
or
2 2
2.2 _, 2W W
e =w 2w2—w?

which is easy to plot (assymptote at 2w? = w2 ).

If g¢ >> w the second factor needs to be large and we need w? = w2 — 4§
for a solution, with § small. This gives ¢>c® = gswy or 6 = 8q+cgw;;
also
2
K' =% ﬁ = C;’ﬁ becomes very large, and also K becomes very

large. Hence the solution is localized at the surface.

Using the solution for § we get K’ = ¢ and hence D = —iC. The wave is
circularly polarized in vacuum and has elliptic polarization in the metal.



