
Solutions for Homework Set 1

1. The face-centered cubic is the most dense and the simple cubic is the least dense of the three cubic Bravais
lattices. The diamond structure is less dense than any of these. One measure of this is the packing fraction for
the respective Bravais lattice in a close-packing arrangement using solid spheres.

Suppose identical solid spheres are distributed through space in such a way that their centers lie on the points of
each these four structures, and spheres on neighboring points just touch without overlapping. Assuming that the
spheres have unit density, determine the density of a set of close-packed spheres on each of following structures:

(a) simple cubic

(b) body-centered cubic

(c) face-centered cubic

(d) hexagonal closed packed Hint: See problem 4.6 in Ashcroft and Mermin. Also look at A. Donev et al,
Science vol. 303, p. 990 (2004) for a way to improve packing using random packing.

(e) Bonus: Determine the packing fraction for a diamond structure.

Solution

(a) Simple Cubic: The close packing requirement implies that the diameter of each sphere is identically the
distance to the nearest neighbour at each lattice point. For simple cubic lattice the nearest neighbour
distance is given by the lattice constant a. Hence the radius of each sphere is a/2. If we consider a cube of
side a with spheres at each point then each lattice point has 1/8Vsph of each sphere inside the cube. Hence,
the packing fraction f is given by

f =
8× Vsph/8

a3
,

=
π

6
, (1)

where Vsph = (4/3)πa3/a3.

(b) BCC: This is similar to SC except there is now a sphere at the centre of the cube. The nearest neighbour
distance is now a

√
3/2. Hence,

Vsph =
√

3πa3

16
,

and

f =
√

3π

8
. (2)

(c) FCC: For our cube of side a there are now 8 corner points as for (a), but there are also lattice points,
centred of each of the 6 faces. Each of the 6 face-centred points have half of the sphere inside the cube.
The nearest neighbour distance is given by a/

√
2. Hence, the volume of the sphere Vsph is

Vsph =
πa3

√
2

,

and
f =

√
2π/6. (3)

(d) HCP: The HCP lattice is a bit trickier, but we can simplify the problem by considering the lattice as
two interpentrating simple hexagonal Bravais lattices. The packing fraction for the HCP lattice is then
twice the packing fraction for one of the simple hexagonal Bravais lattice structures. Consider the simple
hexagonal lattice spanned by the lattice vectors

a1 = ai,

a2 = a
√

3/2i + a/2j,
a3 = ck. (4)

Then, the unit cell spanned by these lattice vectors is a triangular prisim which has a volume V =
√

3a2c/4.
It has 3 corner lattice points on each of the triangle faces, in which each of the spheres have (1/12)Vsph



inside the prisim (this is a simple exercise in counting). The nearest neighbour distance is given by a as
the prisim is close packed. Hence, the packing fraction for HCP is:

f = 2× 6× 1/12× Vsph√
3a2c/4

,

=
a3π/6√
3a2c/4

,

=
π√
18

, (5)

where we’ve used the ratio c =
√

8/3a for a HCP lattice.
(e) (Bonus) Diamond Lattice: The diamond lattice consists of a FCC lattice with a two point basis. The basis atoms

are the lattice point itself and a single atom displaced from the lattice point by a vector d = (a/4)(i+ j+k).
Hence, the nearest neighbour distance is a

√
3/4. Only four of the basis atoms sit inside the unit cube, as

well as 1/8 of the 8 corner spheres and 1/2 of the 6 face centred spheres (the same as FCC). The packing
fraction is therefore

f =
4× Vsph + 1/8× 8× Vsph + 1/6× 6× Vsph

a3
,

=
8(4/3)π(

√
3/8)3a3

a3
,

=
π
√

3
16

. (6)

2. Kittel Problem 2.2

Solution

(a) From Kittel, the primitive translation vectors of the hexagonal space lattice are given by

a1 =
√

3a/2i + a/2j, (7)

a2 = −
√

3a/2i + a/2j, (8)
a3 = ck. (9)

The volume of the primitive cell is given by V = a1 · (a2 × a3), which is the volume of the parallelepiped
spanned by the lattice vectors a1,a2,a3 above. This volume is the same for all choices of primitive unit cell
(including the Wigner-Seitz cell discussed on Wednesday). Simply evaluating the scalar triple productive
then gives

V = (
√

3/2)a2c. (10)

(b) The reciprocal lattice vectors are given by

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, (11)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
, (12)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
, (13)

We now simply evaluate the cross products and divide by the volume calculated in (a) giving:

b1 =
2π

a
√

3
i +

2π

a
j, (14)

b2 = − 2π

a
√

3
i +

2π

a
j, (15)

b3 =
2π

c
k. (16)

Thus the reciprocal lattice is a hexagonal lattice given by rotating the direct lattice by π/6 in the x-y plane
and scaled by sending a → 4π/(3a) and c → 2π/c.



(c) The 1st Brillouin zone of hexagonal space lattice is the Wigner-Seitz cell of the reciprocal lattice. In the
x-y plane the Wigner-Seitz cell is given by regular hexagon. Therefore including the z direction we see that
the 1st Brillouin Zone is a hexagonal prism.

3. Kittel Problem 2.3

As the hint suggests the volume of the 1st Brillouin Zone is equal to the volume of the parallelepiped form by
the basis vectors b1, b2 and b3 of reciprocal space. Thus, VBZ = b1 · (b2 × b3).

We claim that

b1 · (b2 × b3) =
(2π)3

a1 · (a2 × a3)
. (17)

To see this note that

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, (18)

and so

b1 · (b2 × b3) = 2π
(a2 × a3) · (b2 × b3)

a1 · (a2 × a3)
. (19)

Then, using the vector identity

(A×B) · (C×D) = (A ·C)(B ·D)− (A ·D)(B ·C), (20)

we have

(a2 × a3) · (b2 × b3) = (a2 · b2)(a3 · b3)− (a2 · b3)(a3 · b2),
= (2π)2, (21)

using the orthonormality of the lattice vectors viz. ai · bj = (2π)δij . Hence,

VBZ =
(2π)3

Vc
. (22)


