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1. Kittel Problem 6.4

Solution

(a) The mass of the sun is M = 2× 1033g, which we make a number of crude assumptions:
(i) The sun is composed entirely of H and it is completely ionised of its electrons. Also, the number

densities of electrons and protons are of equal number: Np = Ne,
(ii) the mass of the electrons are negligible to that of the protons i.e. Neme ¿ Npmp,
(iii) we can treat the Sun and white dwarf as a free electron gas, with Ne electrons.
Hence, using (i) and (ii) we have

Ne =
M

mp
,

≈ 1.20× 1057. (1)

The Fermi-energy is given by

εf =
~2

2m

(
3π2Ne

V

)2/3

. (2)

Inside a white dwarf of radius R = 2 × 107m, the volume is V = 4πR3/3 = 3.35 × 1022m3 and using this
together with (1) and (2) we have

εf = 40 keV. (3)

(b) In the ultra-relativistic limit, the rest mass of the electron is negligible, and consequently the dispersion
equation becomes ε = ~kc. The fermi-wavevector is given by

kf =
(

3π2Ne

V

)1/3

. (4)

Hence,

εf =
(

3π2N

V

)1/3

~c ≈ ~c(N/V )1/3. (5)

(c) If the radius R = 10km, the volume of the sphere is V = 4.2 × 1012m3. If one were to calculate the
Fermi-energy using the non-relativistic expression then one would get a value of εf = 1.5 × 105MeV À
0.511MeV = mc2, which is relativistic itself! Hence, one should use the relativistic expression in (b) above.
Doing this gives

εf ≈ 1.3× 102MeV. (6)

2. Kittel Problem 6.6

Solution

Given the equation

m

(
dv(t)
dt

+
v(t)
τ

)
= −eE(t),

we can analyse the Fourier component by substituting E(t) = E(ω)exp(−iωt), and v(t) = v(ω)exp(−iωt). Doing
this and solving for v(ω) gives

v(ω) =
−em/τ

1− iωτ
E(ω). (7)

The current density is given by j = −nev, and hence using σ0 = ne2τ/m we have

σ(ω) = σ0
1 + iωτ

1 + ω2τ2
, (8)

where we use the definition of the conductivity given by

j(ω) = σ(ω)v(ω).



3. Kittel Problem 6.7

Solution

(a) With a magnetic field one must now include the complete Lorentz force, and the appropiate equations of
motion to use are given in Kittel (6.51). Taking the Fourier components of these equations gives

m(−iωvx +
vx

τ
) = −e(Ex +

Bvy

c
), (9)

m(−iωvy +
vy

τ
) = −e(Ey − Bvx

c
). (10)

Rewriting this as a matrix equation using the definition of the cyclotron frequency viz. ωc = eB/mc,
(

1− iωτ ωcτ
−ωcτ 1− iωτ

)(
vx

vy

)
= −eτ

m

(
Ex

Ey

)
. (11)

Inverting this matrix equation for (vx, vy) one has
(

vx

vy

)
= − eτ/m

(1− iωτ)2 + (ωcτ)2

(
1− iωτ −ωcτ
ωcτ 1− iωτ

)(
Ex

Ey

)
. (12)

Hence, using j = −nev gives
(

jx

jy

)
=

ne2τ/m

(1− iωτ)2 + (ωcτ)2

(
1− iωτ −ωcτ
ωcτ 1− iωτ

)(
Ex

Ey

)
. (13)

Introducing the plasma fequency defined by ω2
p = 4πne2/m gives

(
jx

jy

)
=

ω2
pτ/4π

(1− iωτ)2 + (ωcτ)2

(
1− iωτ −ωcτ
ωcτ 1− iωτ

)(
Ex

Ey

)
. (14)

We now make the high frequency assumptions that ωτ À 1 and ω À ωc which simplifies our expression.
Doing this, with some algebra gives

(
jx

jy

)
=

ω2
pτ

4π(ωτ)2

(
iωτ ωcτ
−ωcτ iωτ

) (
Ex

Ey

)
.

=
ω2

p

4πω2

(
iω ωc

−ωc iω

)(
Ex

Ey

)
. (15)

Thus, using the definition that ji = σijEj , we have for the conductivity tensor:

σxx = σyy = i
ω2

p

4πω
, (16)

and

σxy = −σyx =
ω2

pωc

4πω2
. (17)

(b) The dielectric tensor is given by

εij = δij +
4πiσij

ω
,

while the wave equation for the electric field is given by

∇2E = ε
∂2E
∂t2

.

Hence, for a plane wave ansatz E = E0 exp(i(k · r− ωt)), with k = kẑ one has

c2k2Ex = ω2((1 +
4πi

ω
σxx)Ex +

4πi

ω
σxyEy), (18)

c2k2Ey = ω2(
4πi

ω
σyxEx + (1 +

4πi

ω
σyy)Ey). (19)



Rewriting as a matrix equation
(

c2k2 − ω2 + ω2
p −iω2

p ωc/ω
iω2

p ωc/ω c2k2 − ω2 + ω2
p

)(
Ex

Ey

)
=

(
0
0

)
. (20)

For a solution to exist the determinant must vanish. This gives us a secular equation which is the dispersion
equation. Explicitily,

(c2k2 − ω2 + ω2
p)2 − (ω2

p ωc/ω)2 = 0. (21)

Solving for c2k2 gives

c2k2 = ω2 − ω2
p ±

ω2
p ωc

ω
. (22)

4. Kittel Problem 6.9

Solution

The solution to this problem goes along the lines of the solution to problem 6.7 above, except now for a static
solution the time derivatives all vanish. Therefore, equation (51) in Kittel becomes

m

τ
vx + (eB/c)vy = −eEx;

m

τ
vy − (eB/c)vx = −eEy;

m

τ
vz = −eEz. (23)

As before we write a matrix equation as



1 ωcτ 0
−ωcτ 1 0
0 0 1







vx

vy

vz


 = −eτ

m




Ex

Ey

Ez


 . (24)

Inverting gives the current density:



jx

jy

jz


 =

σ0

1 + (ωcτ)2




1 −ωcτ 0
ωcτ 1 0
0 0 (1 + (ωcτ)2)−1


 (25)

In the high magnetic field limit ωcτ À 1, and hence keeping only the dominant terms in the previous equation
gives




jx

jy

jz


 =

σ0

ω2
cτ2




0 −ωcτ 0
ωcτ 0 0
0 0 (ωcτ)−2


 (26)

implying the only dominant terms are the off-diagonal ones. That is,

σxy = −σyx = −nec/B (27)

and σxx = O
(
1/(wcτ)2

)
.


