# Solutions for Homework Set 6 

Jock McOrist

1. Kittel Problem 8.1

## Solution

(a) We are given $E_{g}=0.23 \mathrm{eV}, \epsilon=18$, and $m_{\mathrm{e}}=0.015 m_{\mathrm{e}}$. The donor ionisation energy is given by Kittel (8.51):

$$
E_{d}=\frac{e^{4} m_{\mathrm{e}}}{2\left(4 \pi \epsilon \varepsilon_{0} \hbar\right)^{2}}=\frac{13.6 m_{\mathrm{e}}}{\epsilon^{2} m} \mathrm{eV}
$$

With the given values we have

$$
\begin{equation*}
E_{d}=0.630 \mathrm{meV} \tag{1}
\end{equation*}
$$

As a check, Si has a ionisation energy of $E_{d}=29.8 \mathrm{meV}$, much greater than the donor ionisation energy as expected.
(b) Similarly the Bohr radius is given by (8.52) in Kittel. This is

$$
\begin{align*}
a_{d} & =\frac{0.52 \epsilon}{m_{\mathrm{e}} / m} \AA \\
& =636 \AA \tag{2}
\end{align*}
$$

(c) Although it is impossible to calculate the exact answer without without knowing the crystal structure of indium antimonide we can give a reasonable guess assuming a uniform distribution of donor atoms. In this case there is overlap when there is more than one atom in a sphere of radius $a_{d}$. Hence, there is overlap when

$$
\begin{equation*}
N_{D}\left(4 \pi a_{d}^{3} / 3\right) \geq 1 \tag{3}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
N_{D} \geq 9.38 \times 10^{20} \mathrm{~m}^{-3} \tag{4}
\end{equation*}
$$

2. Kittel Problem 8.2

## Solution

We are given some semiconductor with concentration $N_{D}=10^{19} \mathrm{~m}^{-3}$ of donor states, an ionisation energy of $E_{d}=1 \mathrm{meV}$ and effective mass of $m_{\mathrm{e}}=0.01 \mathrm{~m}$.
(a) At $T=4 \mathrm{~K}$, we have $k_{B} T=0.345 \mathrm{meV}$, and $k_{b} T \ll E_{d}$. Hence, using (8.53) in Kittel:

$$
n \approx\left(n_{0} N_{d}\right)^{1 / 2} \exp \left(-E_{d} / 2 k_{b} T\right)
$$

gives with $n_{0}=3.85 \times 10^{19}$ :

$$
\begin{equation*}
n \approx 4.61 \times 10^{18} \mathrm{~m}^{-3} \tag{5}
\end{equation*}
$$

(b) The Hall coefficient is given by Kittel(6.55):

$$
\begin{equation*}
R_{H}=\frac{E_{y}}{j_{x} B}=-\frac{1}{n e} \tag{6}
\end{equation*}
$$

where the second equality follows as $E_{g} \gg k_{b} T$, and we assume the free electron model studied in Chapter 6 of Kittel. Using the values above gives

$$
\begin{equation*}
R_{h}=-1.35 \mathrm{~m}^{3} \mathrm{C}^{-1} \tag{7}
\end{equation*}
$$

3. Kittel Problem 8.3

## Solution

We let the static magnetic field lie in the $z$ direction, and the current flow in the $x$ direction. We assume equilibrium is established so that there is no current in the $y$ direction. From the last HW problem set, problem 6.9 in Kittel gives

$$
\left(\begin{array}{l}
j_{x}  \tag{8}\\
j_{y} \\
j_{z}
\end{array}\right)=\sigma_{e}\left(\begin{array}{lll}
1 & -\omega_{c} \tau_{e} & 0 \\
\omega_{c} \tau_{e} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right)
$$

where in the low $B$ field limit we ignore $\left(\omega_{c} \tau\right)^{2}$ and $B^{2}$ terms.
To include the current due to the presence of the holes we include a similar conductivity term with e replaced by $-e$. This is justified because a hole acts like an electron with a positive electric charge (See Kittel (8.22)). Indeed one can follow through the derivation in problem 6.9 with $e \rightarrow-e, m_{e} \rightarrow m_{h}, \tau_{e} \rightarrow \tau_{h}$ giving

$$
\left(\begin{array}{l}
j_{x}  \tag{9}\\
j_{y} \\
j_{z}
\end{array}\right)=\sigma_{h}\left(\begin{array}{lll}
1 & \omega_{c}^{*} \tau_{h} & 0 \\
-\omega_{c}^{*} \tau_{h} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right)
$$

where $\omega_{c}^{*}=e B / m_{h}, \sigma_{h}=n e^{2} \tau_{h} / m_{h}$. The total current is given by the sum of these two terms. As $E_{z}=0$, we have $j_{z}=0$, and so

$$
\binom{j_{x}}{j_{y}}=\left(\begin{array}{ll}
\sigma_{e}+\sigma_{h} & \sigma_{h} \omega_{c}^{*} \tau_{h}-\sigma_{e} \omega_{c} \tau_{e}  \tag{10}\\
-\sigma_{h} \omega_{c}^{*} \tau_{h}+\sigma_{e} \omega_{c} \tau_{e} & \sigma_{e}+\sigma_{h}
\end{array}\right)\binom{E_{x}}{E_{y}}
$$

In terms of the mobility $\mu_{e}=e \tau_{e} / m_{e}$, and $\mu_{h}=e \tau_{h} / m_{h}$ we have

$$
\binom{j_{x}}{j_{y}}=e\left(\begin{array}{ll}
\left(n \mu_{e}+p \mu_{h}\right) & -B\left(n \mu_{e}^{2}-p \mu_{h}^{2}\right)  \tag{11}\\
B\left(n \mu_{e}^{2}-p \mu_{h}^{2}\right) & \left(n \mu_{e}+p \mu_{h}\right)
\end{array}\right)\binom{E_{x}}{E_{y}}
$$

The equilibrium condition that $j_{y}=0$ implies that

$$
\begin{equation*}
E_{x}=-\frac{n \mu_{e}+p \mu_{h}}{B\left(n \mu_{e}^{2}-p \mu_{h}^{2}\right)} E_{y} \tag{12}
\end{equation*}
$$

Then solving for $j_{x}$ gives us

$$
\begin{equation*}
j_{x}=-\frac{e}{B} \frac{\left(n \mu_{e}+p \mu_{h}\right)^{2}}{\left(n \mu_{e}^{2}-p \mu_{h}^{2}\right)}+\mathrm{O}(B) \tag{13}
\end{equation*}
$$

Then the Hall coefficient is given by

$$
\begin{equation*}
R_{H}=\frac{E_{y}}{j_{x} B}=-\frac{n \mu_{e}^{2}-p \mu_{h}^{2}}{e\left(n \mu_{e}+p \mu_{h}\right)^{2}} \tag{14}
\end{equation*}
$$

Introducing $b=\mu_{e} / \mu_{h}$ we then have

$$
\begin{equation*}
R_{H}=\frac{p-n b^{2}}{e(n b+p)^{2}} \tag{15}
\end{equation*}
$$

## 4. Kittel Problem 8.4

## Solution

The equation of motion (8.6) in Kittelgives us

$$
\hbar \frac{\mathrm{d} \vec{k}}{\mathrm{~d} t}=-e \vec{v} \times \vec{B}
$$

where $\vec{v}=\nabla_{\vec{k}} \epsilon(\vec{k}) / \hbar$. The relevant energy surface is given by

$$
\begin{equation*}
\epsilon(\vec{k})=\hbar^{2}\left(\frac{k_{x}^{2}+k_{y}^{2}}{2 m_{t}}+\frac{k_{z}^{2}}{2 m_{l}}\right) \tag{16}
\end{equation*}
$$

and so

$$
\vec{v}=\hbar\left(\frac{k_{x}}{m_{t}} \hat{x}+\frac{k_{y}}{m_{t}} \hat{y}+\frac{k_{x}}{m_{l}} \hat{z}\right)
$$

The system is symmetric about the $z$ axis, and so without loss of generality we can orentiate the magnetic field in the $x$-direction. Hence, the equations of motion become

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{l}
k_{x}  \tag{17}\\
k_{y} \\
k_{z}
\end{array}\right)=-e \hbar\left(\begin{array}{l}
0 \\
k_{z} B_{x} / m_{l} \\
-k_{y} B / m_{t}
\end{array}\right)
$$

which are easily solved and are harmonic in nature. Then, solving for either $k_{y}$ or $k_{z}$ gives the same equation:

$$
\frac{\mathrm{d}^{2} k_{y}}{\mathrm{~d} t^{2}}=-\left(\frac{e^{2} B^{2}}{m_{t} m_{l}}\right) k_{y}
$$

which has solution $k_{y}=A \sin \omega_{c} t+B \cos \omega_{c} t$, where

$$
\begin{equation*}
\omega_{c}=\frac{e B}{\left(m_{l} m_{t}\right)^{1 / 2}} \tag{18}
\end{equation*}
$$

